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SUMMARY
Unfortunately we have to admit that after decades of development there are still no reliable techniques of
full waveform inversion which guarantee reliable reconstruction of both macrovelocity model and
reflectors reconstruction for reasonable acquisitions and frequency ranges. As reasonable we mean realistic
offsets (about one-two depths of target objects) and temporal frequency above 5 – 7 Hz.
The paper is devoted to the so-called Migration Based Travel Times (MBTT) formulation of the data
misfit functional. This approach relies on the decomposition of a velocity model onto two subspaces –
smooth propagator and rough depth reflectors. On this base the modified data misfit functional is
introduced and compared with standard least squares formulation. Numerical Singular Value
Decomposition proves that these two formulations produce functionals which have almost orthogonal
stable subspaces. As is well known the classical formulation leads to stable subspaces mainly made of fast
oscillating functions (reflectors). At the same time we prove that MBTT modification ensures appearance
of the propagator in these stable subspaces.
Numerical experiments prove the feasibility of full inversion for reflected waves in this modified
reformulation for the well known Gullfaks velocity model.
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 Introduction 

The velocity model in the depth domain is responsible for correct travel-times of wave propagation 

and therefore is a key element of the up-to-date seismic data processing. As early as the middle of 80th 

of the last century A.Tarantola introduced the Full Waveform Inversion (FWI) based on the matching 

the observed and the synthetic seismograms. The L2 norm is widely used for such matching, though 

other criteria are also considered. To minimize the misfit function and to find the elastic parameters of 

the subsurface, iterative gradient-based algorithms are usually applied. Such approach to FWI 

proposed originally by Lailly (1983) and Tarantola (1984) has been developed and studied in a great 

number of publications (see Virieux and Operto (2009), and the references therein).  

However, the straightforward application of FWI reconstructs reliably only the reflectivity component 

of the subsurface but fails to provide a smooth velocity model (see, e.g., (Gauthier et al., 1986) and 

(Mora, 1988)). The matter is the shape of the data misfit functional differs a lot with respect to various 

velocity components – it is nearly quadratic with respect to reflectors, but perturbations of the smooth 

velocity component (propagator) lead to a very complicated and non-linear behavior (see e.g. Sirgue, 

2006). Heuristically it is explained by the so-called “cycle-skip” problem when phase shifts of the 

observed and synthetic data may result in local minima. To mitigate this problem Bunks et al. (1995) 

proposed a multiscale inversion strategy in which the frequency of the input data is increased 

progressively. It was implemented by low-pass band filtering of data in the time domain. In 

frequency-domain FWI (Pratt et al., 1998), one may proceed sequentially from low to high 

frequencies, which is a very natural and cost-efficient way of applying the approach. The inversion 

result obtained with lower frequency becomes an initial guess for inversion for the higher frequency 

constituent of the data, and so on. However, such sequential inversion approach also fails due to lack 

of low frequencies in the data (Sirgue, 2006). The missing of low-frequency component in the 

spectrum of the observed waveforms was found out to be critical for successful inversion. This was 

one of the factors impeding the application of FWI to real data. Recent advances in seismic 

acquisition and bandwidth broadening, as well as increase in computational power and complication 

of exploration and production gave a new impetus to the FWI approach. Although the key focus today 

is on tuning of the forward and inversion processes and on efficiency enhancement of the algorithms, 

developing approaches which can avoid necessity of extremely low frequencies in the data and 

provide reasonable grounds for Full Waveform Inversion are of great importance. 

In what follows we are concentrated on comparative numerical analysis of the Singular Value 

Decomposition of the data misfit functional for Full Waveform Inversion in the standard and 

Migration Based Travel Time formulation which was introduced in (Clement, Chavent and Gomez, 

2001). 

Method and Theory 

Seismic inverse problem can be treated as a nonlinear operator equation: 
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where DMF :  is a nonlinear forward map, which transforms model space M  into data space D . In 

order to simplify the mathematics below the Helmholtz equation is dealt with: 
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In (1) the data d are the solution of this equation taken at receivers’ position. 

Standard least-squares formulation.  

The standard approach to Full Waveform Inversion (Tarantola, 1984; Virieux and Operto, 2009) is to 

find the minimum point of the non-linear data misfit functional (nonlinear least squares formulation):  
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The common way to search for minimum *m  is implementation of some local minimization technique 

which usually relies on gradient representation on the base of the adjoint to the linearized forward 

map (formal Frechet derivative of the full forward map (1)) (Tarantola, 1984).  
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 Migration Based Travel Time (MBTT) formulation. 

The essence of this formulation is to decompose the velocity model into two constituents: smooth 

propagator p and oscillating reflector r (Chavent et al., 2001). In turn, reflector is treated as the result 

of true amplitude migration applied to the part of the data called time reflectivity (preimage of the 

spatial reflector):  

spprpm )( (4) 

The key moment of this decomposition is propagator-reflector interrelation ><= s)p(r  with 

operator M(p) being some kind of true-amplitude prestack migration/linearized inversion. In particular 

reweighted version of adjoint operator based migration: 

spDFWsp )(Re)( *
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Where DF is Frechet derivative of the full nonlinear map F, * means adjoint operator and W is some 

linear operator providing true amplitudes imaging/migration.  

This kind of the model space decomposition leads to the following modified data misfit functional: 
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Minimization with respect to propagator p and reflector r is performed independently and by turn. We 

start with admitting s=d and do search for some intermediate value of propagator p. After stabilization 

of this process the search is switched to time reflectivity s and so on.  

Doing the standard computations we come to the following formal gradients with respect to 

propagator p and time reflectivity s (let us pay attention that computation of space reflectivity r is 

straightforward by applying (4) and (5)): 
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Comparative analysis of the Singular Value Decompositions for standard and MBTT formulations 

The main features of the iterative minimization process for both standard and MBTT formulations are 

governed by the structure of the linearized forward map (formal Frechet derivative). This structure is 

completely described by the Singular Value Decomposition of the corresponding operators 

(Cheverda, Kostin, 1995; Silvestrov et al., 2013). Therefore the first series of numerical experiments 

was devoted to the comparison of SVD for both this formulations. Let us start with Fig.1, representing 

behavior of singular values. As one can see, they are the same up to number 60 that is up to cond 

number ≈100.  

Next, let us analyze how far apart are linear spans of the right singular vectors of these two Frechet 

derivatives. To do this we compute opening angles between these linear spans with increasing 

dimensions. The result is presented in Fig.2 and proves that subspaces are almost the same up to 

dimension about 50 – 55 but becomes almost orthogonal when spanning more than 60 right singular 

vectors.  

To estimate how linear spans corresponding to reasonable cond numbers (cond≈1000) are situated in 

the model space with respect to the propagator the simplest propagator is projected to two linear 

spanned of 70 right singular vectors. In Fig. 3 we present results obtained for standard (left) and 

MBTT (right) formulations. One can clear see that for the latter propagator is almost perfectly saved, 

while for the first formulation it is destroyed. 
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Figure 1 Singular values for 

standard (solid line) and 

MBTT (dashed line) 
formulations.  

Figure 2 Opening angles 

between linear spans of right  

singular vectors for standard 

and MBTT formulations. 

Figure 3 Projection of the 

propagator to the linear spans 

of first 70 right singular vectors. 

Numerical Examples for the Realistic Synthetic Models 

The realistic example invoked in the study is based on a synthetic velocity model for the Gullfaks 

South fields presented in Fig. 4a (Thompson, 2003). Input data are synthesized for the set of eighteen 

uniform frequencies in the range 5 ÷ 20 Hz. Our choice of the lowest temporal frequency equal to 5 Hz 

is due to some publications and discussions real field data range of the stable registration of the signal 

recording. The acquisition system has 20 volumetric sources and 200 receivers located at depth 10m 

with a lateral spacing of 200m and 20m respectively. As initial guess, smooth vertically 

heterogeneous model (see Fig. 4b) is used.   

The result obtained by the simultaneous conventional least squares FWI for all frequencies can be 

seen in Fig.4c and Fig.5a. As one can clear recognize standard non-linear FWI fails to reconstruct 

smooth velocity model (propagator) for chosen frequency range. Recovered model contains mainly 

the reflectivity component of the solution, but location of target horizons is reconstructed with a 

sizeable error (see Fig. 5). 

The results of Full Waveform Inversion in MBTT formulation are presented in Fig. 4d and Fig.5b. As 

an initial guess for the time reflectivity variable s are used the observed data itself, initial propagator p 

model is the same as the previous one used for conventional FWI (see Fig. 3b). The search for 

propagator is done in the space of 2D B-Splines functions of order 3. This guaranteed that the search 

is implemented in the smooth propagator space. The minimization is performed using the projected 

conjugate gradient method, where orthogonal projector onto smooth space (B-splines) is used as a 

projection onto the feasible set.  

The propagator reconstruction is demonstrated in Fig. 6. One may see that modified data misfit 

functional is sensitive with respect to the macro velocity model. Moreover, when the propagator 

unknown p is updated, the depth reflectivity r is updated as well, because of their interrelation through 

the migration operator: spr )( . This is clear seen in Fig.2b: the minimization process updates 

simultaneously both smooth model and depth reflector. As a result, when propagator is close to the 

true macro velocity model, reflectors are placed in the correct positions.  

The final velocity model, recovered by the Full Waveform Inversion MBTT formulation is presented 

in Fig. 4d and Fig.5b. As one can see, there is excellent general reconstruction – up to “eyeball norm”, 

there is no difference in real and reconstructed 2D model. In order to see the difference we present 1D 

real and recovered cross-section. There are some small deviations, which, like smoothing the jump at 

the depth 1000 m and not absolute coincidence of high oscillations below 2000 m. 

Conclusions 

We present the results of reflection FWI in MBTT formulation in application to a 2D synthetic 

dataset. The numerical experiments demonstrate sensitivity of the modified least-squares data misfit 

functional to a smooth constituent of the velocity model, as opposed to a standard least-squares FWI 

formulation. 
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a) b) 

c) d) 

Figure 4 a) True velocity model. b) Initial guess. c) Result of the standard FWI. d) FWI in MBTT 

formulation. 
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